eda 设计软件主要有哪些

装修宝典05

eda 设计软件主要有哪些,第1张

eda 设计软件主要有哪些
导读:EDA常用软件 EDA工具层出不穷,目前进入我国并具有广泛影响的EDA软件有:multiSIM7(原EWB的最新版本)、PSPICE、OrCAD、PCAD、Protel、Viewlogic、Mentor、Graphics、Synopsys、

EDA常用软件

EDA工具层出不穷,目前进入我国并具有广泛影响的EDA软件有:multiSIM7(原EWB的最新版本)、PSPICE、OrCAD、PCAD、Protel、Viewlogic、Mentor、Graphics、Synopsys、LSIIogic、Cadence、MicroSim等等。这些工具都有较强的功能,一般可用于几个方面,例如很多软件都可以进行电路设计与仿真,同进还可以进行PCB自动布局布线,可输出多种网表文件与第三方软件接口。

(下面是关于EDA的软件介绍,有兴趣的话,旧看看吧^^^)

下面按主要功能或主要应用场合,分为电路设计与仿真工具、PCB设计软件、IC设计软件、PLD设计工具及其它EDA软件,进行简单介绍。

21 电子电路设计与仿真工具

我们大家可能都用过试验板或者其他的东西 *** 过一些电子制做来进行实践。但是有的时候,我们会发现做出来的东西有很多的问题,事先并没有想到,这样一来就浪费了我们的很多时间和物资。而且增加了产品的开发周期和延续了产品的上市时间从而使产品失去市场竞争优势。有没有能够不动用电烙铁试验板就能知道结果的 *** 呢?结论是有,这就是电路设计与仿真技术。

说到电子电路设计与仿真工具这项技术,就不能不提到美国,不能不提到他们的飞机设计为什么有很高的效率。以前我国定型一个中型飞机的设计,从草案到详细设计到风洞试验再到最后出图到实际投产,整个周期大概要10年。而美国是1年。为什么会有这样大的差距呢?因为美国在设计时大部分采用的是虚拟仿真技术,把多年积累的各项风洞实验参数都输入电脑,然后通过电脑编程编写出一个虚拟环境的软件,并且使它能够自动套用相关公式和调用长期积累后输入电脑的相关经验参数。这样一来,只要把飞机的外形计数据放入这个虚拟的风洞软件中进行试验,哪里不合理有问题就改动那里,直至更佳效果,效率自然高了,最后只要再在实际环境中测试几次找找不足就可以定型了,从他们的波音747到F16都是采用的这种 *** 。空气动力学方面的数据由资深专家提供,软件开发商是IBM,飞行器设计工程师只需利用仿真软件在计算机平台上进行各种仿真调试工作即可。同样,他们其他的很多东西都是采用了这样类似的 *** ,从大到小,从复杂到简单,甚至包括设计家具和作曲,只是具体软件内容不同。其实,他们发明之一代计算机时就是这个目的(当初是为了高效率设计大炮和相关炮弹以及其他计算量大的设计)。

电子电路设计与仿真工具包括SPICE/PSPICE;multiSIM7;Matlab;SystemView;MMICAD LiveWire、Edison、Tina Pro Bright Spark等。下面简单介绍前三个软件。

①SPICE(Simulation Program with Integrated Circuit Emphasis):是由美国加州大学推出的电路分析仿真软件,是20世纪80年代世界上应用最广的电路设计软件,1998年被定为美国国家标准。1984年,美国MicroSim公司推出了基于SPICE的微机版PSPICE(Personal-SPICE)。现在用得较多的是PSPICE62,可以说在同类产品中,它是功能最为强大的模拟和数字电路混合仿真EDA软件,在国内普遍使用。最新推出了PSPICE91版本。它可以进行各种各样的电路仿真、激励建立、温度与噪声分析、模拟控制、波形输出、数据输出、并在同一窗口内同时显示模拟与数字的仿真结果。无论对哪种器件哪些电路进行仿真,都可以得到精确的仿真结果,并可以自行建立元器件及元器件库。

②multiSIM(EWB的最新版本)软件:是Interactive Image Technologies Ltd在20世纪末推出的电路仿真软件。其最新版本为multiSIM7,目前普遍使用的是multiSIM2001,相对于其它EDA软件,它具有更加形象直观的人机交互界面,特别是其仪器仪表库中的各仪器仪表与操作真实实验中的实际仪器仪表完全没有两样,但它对模数电路的混合仿真功能却毫不逊色,几乎能够100%地仿真出真实电路的结果,并且它在仪器仪表库中还提供了万用表、信号发生器、瓦特表、双踪示波器(对于multiSIM7还具有四踪示波器)、波特仪(相当实际中的扫频仪)、字信号发生器、逻辑分析仪、逻辑转换仪、失真度分析仪、频谱分析仪、 *** 分析仪和电压表及电流表等仪器仪表。还提供了我们日常常见的各种建模精确的元器件,比如电阻、电容、电感、三极管、二极管、继电器、可控硅、数码管等等。模拟集成电路方面有各种运算放大器、其他常用集成电路。数字电路方面有74系列集成电路、4000系列集成电路、等等还支持自制元器件。MultiSIM7还具有I-V分析仪(相当于真实环境中的晶体管特性图示仪)和Agilent信号发生器、Agilent万用表、Agilent示波器和动态逻辑平笔等。同时它还能进行VHDL仿真和Verilog HDL仿真。

③MATLAB产品族:它们的一大特性是有众多的面向具体应用的工具箱和仿真块,包含了完整的函数集用来对图像信号处理、控制系统设计、神经 *** 等特殊应用进行分析和设计。它具有数据采集、报告生成和MATLAB语言编程产生独立C/C++代码等功能。MATLAB产品族具有下列功能:数据分析;数值和符号计算、工程与科学绘图;控制系统设计;数字图像信号处理;财务工程;建模、仿真、原型开发;应用开发;图形用户界面设计等。MATLAB产品族被广泛应用于信号与图像处理、控制系统设计、通讯系统仿真等诸多领域。开放式的结构使MATLAB产品族很容易针对特定的需求进行扩充,从而在不断深化对问题的认识同时,提高自身的竞争力。

22 PCB设计软件

PCB(Printed-Circuit Board)设计软件种类很多,如Protel、OrCAD、Viewlogic、PowerPCB、Cadence PSD、MentorGraphices的Expedition PCB、Zuken CadStart、Winboard/Windraft/Ivex-SPICE、PCB Studio、TANGO、PCBWizard(与LiveWire配套的PCB *** 软件包)、ultiBOARD7(与multiSIM2001配套的PCB *** 软件包)等等。

目前在我国用得最多当属Protel,下面仅对此软件作一介绍。

Protel是PROTEL(现为Altium)公司在20世纪80年代末推出的CAD工具,是PCB设计者的首选软件。它较早在国内使用,普及率更高,在很多的大、中专院校的电路专业还专门开设Protel课程,几乎所在的电路公司都要用到它。早期的Protel主要作为印刷板自动布线工具使用,其最新版本为Protel DXP,现在普遍使用的是Protel99SE,它是个完整的全方位电路设计系统,包含了电原理图绘制、模拟电路与数字电路混合信号仿真、多层印刷电路板设计(包含印刷电路板自动布局布线),可编程逻辑器件设计、图表生成、电路表格生成、支持宏操作等功能,并具有Client/Server(客户/服务体系结构), 同时还兼容一些其它设计软件的文件格式,如ORCAD、PSPICE、EXCEL等。使用多层印制线路板的自动布线,可实现高密度PCB的100%布通率。Protel软件功能强大(同时具有电路仿真功能和PLD开发功能)、界面友好、使用方便,但它更具代表性的是电路设计和PCB设计。

23 IC设计软件

IC设计工具很多,其中按市场所占份额排行为Cadence、Mentor Graphics和Synopsys。这三家都是ASIC设计领域相当有名的软件供应商。其它公司的软件相对来说使用者较少。中国华大公司也提供ASIC设计软件(熊猫2000);另外近来出名的Avanti公司,是原来在Cadence的几个华人工程师创立的,他们的设计工具可以全面和Cadence公司的工具相抗衡,非常适用于深亚微米的IC设计。下面按用途对IC设计软件作一些介绍。

①设计输入工具

这是任何一种EDA软件必须具备的基本功能。像Cadence的composer,viewlogic的viewdraw,硬件描述语言VHDL、Verilog HDL是主要设计语言,许多设计输入工具都支持HDL(比如说multiSIM等)。另外像Active-HDL和其它的设计输入 *** ,包括原理和状态机输入 *** ,设计FPGA/CPLD的工具大都可作为IC设计的输入手段,如Xilinx、Altera等公司提供的开发工具Modelsim FPGA等。

②设计仿真工作

我们使用EDA工具的一个更大好处是可以验证设计是否正确,几乎每个公司的EDA产品都有仿真工具。Verilog-XL、NC-verilog用于Verilog仿真,Leapfrog用于VHDL仿真,Analog Artist用于模拟电路仿真。Viewlogic的仿真器有:viewsim门级电路仿真器,speedwaveVHDL仿真器,VCS-verilog仿真器。Mentor Graphics有其子公司Model Tech出品的VHDL和Verilog双仿真器:Model Sim。Cadence、Synopsys用的是VSS(VHDL仿真器)。现在的趋势是各大EDA公司都逐渐用HDL仿真器作为电路验证的工具。

③综合工具

综合工具可以把HDL变成门级网表。这方面Synopsys工具占有较大的优势,它的Design Compile是作为一个综合的工业标准,它还有另外一个产品叫Behavior Compiler,可以提供更高级的综合。

另外最近美国又出了一个软件叫Ambit,据说比Synopsys的软件更有效,可以综合50万门的电路,速度更快。今年初Ambit被Cadence公司收购,为此Cadence放弃了它原来的综合软件Synergy。随着FPGA设计的规模越来越大,各EDA公司又开发了用于FPGA设计的综合软件,比较有名的有:Synopsys的FPGA Express, Cadence的Synplity, Mentor的Leonardo,这三家的FPGA综合软件占了市场的绝大部分。

④布局和布线

在IC设计的布局布线工具中,Cadence软件是比较强的,它有很多产品,用于标准单元、门阵列已可实现交互布线。最有名的是Cadence spectra,它原来是用于PCB布线的,后来Cadence把它用来作IC的布线。其主要工具有:Cell3,Silicon Ensemble-标准单元布线器;Gate Ensemble-门阵列布线器;Design Planner-布局工具。其它各EDA软件开发公司也提供各自的布局布线工具。

⑤物理验证工具

物理验证工具包括版图设计工具、版图验证工具、版图提取工具等等。这方面Cadence也是很强的,其Dracula、Virtuso、Vampire等物理工具有很多的使用者。

⑥模拟电路仿真器

前面讲的仿真器主要是针对数字电路的,对于模拟电路的仿真工具,普遍使用SPICE,这是唯一的选择。只不过是选择不同公司的SPICE,像MiceoSim的PSPICE、Meta Soft的HSPICE等等。HSPICE现在被Avanti公司收购了。在众多的SPICE中,HSPICE作为IC设计,其模型多,仿真的精度也高。

24 PLD设计工具

PLD(Programmable Logic Device)是一种由用户根据需要而自行构造逻辑功能的数字集成电路。目前主要有两大类型:CPLD(Complex PLD)和FPGA(Field Programmable Gate Array)。它们的基本设计 *** 是借助于EDA软件,用原理图、状态机、布尔表达式、硬件描述语言等 *** ,生成相应的目标文件,最后用编程器或下载电缆,由目标器件实现。生产PLD的厂家很多,但最有代表性的PLD厂家为Altera、Xilinx和Lattice公司。

PLD的开发工具一般由器件生产厂家提供,但随着器件规模的不断增加,软件的复杂性也随之提高,目前由专门的软件公司与器件生产厂家使用,推出功能强大的设计软件。下面介绍主要器件生产厂家和开发工具。

①ALTERA:20世纪90年代以后发展很快。主要产品有:MAX3000/7000、FELX6K/10K、APEX20K、ACEX1K、Stratix等。其开发工具-MAX+PLUS II是较成功的PLD开发平台,最新又推出了Quartus II开发软件。Altera公司提供较多形式的设计输入手段,绑定第三方VHDL综合工具,如:综合软件FPGA Express、Leonard Spectrum,仿真软件ModelSim。

②ILINX:FPGA的发明者。产品种类较全,主要有:XC9500/4000、Coolrunner(XPLA3)、Spartan、Vertex等系列,其更大的Vertex-II Pro器件已达到800万门。开发软件为Foundation和ISE。通常来说,在欧洲用Xilinx的人多,在日本和亚太地区用ALTERA的人多,在美国则是平分秋色。全球PLD/FPGA产品60%以上是由Altera和Xilinx提供的。可以讲Altera和Xilinx共同决定了PLD技术的发展方向。

③Lattice-Vantis:Lattice是ISP(In-System Programmability)技术的发明者。ISP技术极大地促进了PLD产品的发展,与ALTERA和XILINX相比,其开发工具比Altera和Xilinx略逊一筹。中小规模PLD比较有特色,大规模PLD的竞争力还不够强(Lattice没有基于查找表技术的大规模FPGA),1999年推出可编程模拟器件,1999年收购Vantis(原AMD子公司),成为第三大可编程逻辑器件供应商。2001年12月收购Agere公司(原Lucent微电子部)的FPGA部门。主要产品有ispLSI2000/5000/8000,MACH4/5。

④ACTEL:反熔丝(一次性烧写)PLD的领导者。由于反熔丝PLD抗辐射、耐高低温、功耗低、速度快,所以在军品和宇航级上有较大优势。ALTERA和XILINX则一般不涉足军品和宇航级市场。

⑤Quicklogic:专业PLD/FPGA公司,以一次性反熔丝工艺为主,在中国地区销售量不大。

⑥Lucent:主要特点是有不少用于通讯领域的专用IP核,但PLD/FPGA不是Lucent的主要业务,在中国地区使用的人很少。

⑦ATMEL:中小规模PLD做得不错。ATMEL也做了一些与Altera和Xilinx兼容的片子,但在品质上与原厂家还是有一些差距,在高可靠性产品中使用较少,多用在低端产品上。

⑧Clear Logic:生产与一些著名PLD/FPGA大公司兼容的芯片,这种芯片可将用户的设计一次性固化,不可编程,批量生产时的成本较低。

⑨WSI:生产PSD(单片机可编程外围芯片)产品。这是一种特殊的PLD,如最新的PSD8xx、PSD9xx集成了PLD、EPROM、Flash,并支持ISP(在线编程),集成度高,主要用于配合单片机工作。

顺便提一下:PLD(可编程逻辑器件)是一种可以完全替代74系列及GAL、PLA的新型电路,只要有数字电路基础,会使用计算机,就可以进行PLD的开发。PLD的在线编程能力和强大的开发软件,使工程师可以几天,甚至几分钟内就可完成以往几周才能完成的工作,并可将数百万门的复杂设计集成在一颗芯片内。PLD技术在发达国家已成为电子工程师必备的技术。

25 其它EDA软件

①VHDL语言:超高速集成电路硬件描述语言(VHSIC Hardware Deseription Languagt,简称VHDL),是IEEE的一项标准设计语言。它源于美国国防部提出的超高速集成电路(Very High Speed Integrated Circuit,简称VHSIC)计划,是ASIC设计和PLD设计的一种主要输入工具。

②Veriolg HDL:是Verilog公司推出的硬件描述语言,在ASIC设计方面与VHDL语言平分秋色。

③其它EDA软件如专门用于微波电路设计和电力载波工具、PCB *** 和工艺流程控制等领域的工具,在此就不作介绍了。

3 EDA的应用

EDA在教学、科研、产品设计与制造等各方面都发挥着巨大的作用。在教学方面,几乎所有理工科(特别是电子信息)类的高校都开设了EDA课程。主要是让学生了解EDA的基本概念和基本原理、掌握用HDL语言编写规范、掌握逻辑综合的理论和算法、使用EDA工具进行电子电路课程的实验验证并从事简单系统的设计。一般学习电路仿真工具(如multiSIM、PSPICE)和PLD开发工具(如Altera/Xilinx的器件结构及开发系统),为今后工作打下基础。

科研方面主要利用电路仿真工具(multiSIM或PSPICE)进行电路设计与仿真;利用虚拟仪器进行产品测试;将CPLD/FPGA器件实际应用到仪器设备中;从事PCB设计和ASIC设计等。

在产品设计与制造方面,包括计算机仿真,产品开发中的EDA工具应用、系统级模拟及测试环境的仿真,生产流水线的EDA技术应用、产品测试等各个环节。如PCB的 *** 、电子设备的研制与生产、电路板的焊接、ASIC的 *** 过程等。

从应用领域来看,EDA技术已经渗透到各行各业,如上文所说,包括在机械、电子、通信、航空航航天、化工、矿产、生物、医学、军事等各个领域,都有EDA应用。另外,EDA软件的功能日益强大,原来功能比较单一的软件,现在增加了很多新用途。如AutoCAD软件可用于机械及建筑设计,也扩展到建筑装璜及各类效果图、汽车和飞机的模型、**特技等领域。

4 EDA技术的发展趋势

从目前的EDA技术来看,其发展趋势是 *** 重视、使用普及、应用广泛、工具多样、软件功能强大。

中国EDA市场已渐趋成熟,不过大部分设计工程师面向的是PCB制板和小型ASIC领域,仅有小部分(约11%)的设计人员开发复杂的片上系统器件。为了与台湾和美国的设计工程师形成更有力的竞争,中国的设计队伍有必要引进和学习一些最新的EDA技术。

在信息通信领域,要优先发展高速宽带信息网、深亚微米集成电路、新型元器件、计算机及软件技术、第三代移动通信技术、信息管理、信息安全技术,积极开拓以数字技术、 *** 技术为基础的新一代信息产品,发展新兴产业,培育新的经济增长点。要大力推进制造业信息化,积极开展计算机辅助设计(CAD)、计算机辅助工程(CAE)、计算机辅助工艺(CAPP)、计算机机辅助制造(CAM)、产品数据管理(PDM)、制造资源计划(MRPII)及企业资源管理(ERP)等。有条件的企业可开展“ *** 制造”,便于合作设计、合作制造,参与国内和国际竞争。开展“数控化”工程和“数字化”工程。自动化仪表的技术发展趋势的测试技术、控制技术与计算机技术、通信技术进一步融合,形成测量、控制、通信与计算机(M3C)结构。在ASIC和PLD设计方面,向超高速、高密度、低功耗、低电压方面发展。

外设技术与EDA工程相结合的市场前景看好,如组合超大屏幕的相关连接,多屏幕技术也有所发展。

中国自1995年以来加速开发半导体产业,先后建立了几所设计中心,推动系列设计活动以应对亚太地区其它EDA市场的竞争。

在EDA软件开发方面,目前主要集中在美国。但各国也正在努力开发相应的工具。日本、韩国都有ASIC设计工具,但不对外开放。中国华大集成电路设计中心,也提供IC设计软件,但性能不是很强。相信在不久的将来会有更多更好的设计工具在各地开花并结果。据最新统计显示,中国和印度正在成为电子设计自动化领域发展最快的两个市场,年夏合增长率分别达到了50%和30%。

EDA技术发展迅猛,完全可以用日新月异来描述。EDA技术的应用广泛,现在已涉及到各行各业。EDA水平不断提高,设计工具趋于完美的地步。EDA市场日趋成熟,但我国的研发水平仍很有限,尚需迎头赶上。

CPLD

[编辑本段]简介

CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计 *** 是借助集成开发软件平台,用原理图、硬件描述语言等 *** ,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。

CPLD主要是由可编程逻辑宏单元(MC,Macro Cell)围绕中心的可编程互连矩阵单元组成。其中MC结构较复杂,并具有复杂的I/O单元互连结构,可由用户根据需要生成特定的电路结构,完成一定的功能。由于CPLD内部采用固定长度的金属线进行各逻辑块的互连,所以设计的逻辑电路具有时间可预测性,避免了分段式互连结构时序不完全预测的缺点。

发展历史及应用领域:

20世纪70年代,最早的可编程逻辑器件--PLD诞生了。其输出结构是可编程的逻辑宏单元,因为它的硬件结构设计可由软件完成(相当于房子盖好后人工设计局部室内结构),因而它的设计比纯硬件的数字电路具有很强的灵活性,但其过于简单的结构也使它们只能实现规模较小的电路。为弥补PLD只能设计小规模电路这一缺陷,20世纪80年代中期,推出了复杂可编程逻辑器件--CPLD。目前应用已深入 *** 、仪器仪表、汽车电子、数控机床、航天测控设备等方面。

器件特点:

它具有编程灵活、集成度高、设计开发周期短、适用范围宽、开发工具先进、设计制造成本低、对设计者的硬件经验要求低、标准产品无需测试、保密性强、价格大众化等特点,可实现较大规模的电路设计,因此被广泛应用于产品的原型设计和产品生产(一般在10,000件以下)之中。几乎所有应用中小规模通用数字集成电路的场合均可应用CPLD器件。CPLD器件已成为电子产品不可缺少的组成部分,它的设计和应用成为电子工程师必备的一种技能。

如何使用:

CPLD是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计 *** 是借助集成开发软件平台,用原理图、硬件描述语言等 *** ,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。

这里以抢答器为例讲一下它的设计(装修)过程,即芯片的设计流程。CPLD的工作大部分是在电脑上完成的。打开集成开发软件(Altera公司 Max+pluxII)→画原理图、写硬件描述语言(VHDL,Verilog)→编译→给出逻辑电路的输入激励信号,进行仿真,查看逻辑输出结果是否正确→进行管脚输入、输出锁定(7128的64个输入、输出管脚可根据需要设定)→生成代码→通过下载电缆将代码传送并存储在CPLD芯片中。7128这块芯片各管脚已引出,将数码管、抢答开关、指示灯、蜂鸣器通过导线分别接到芯片板上,通电测试,当抢答开关按下,对应位的指示灯应当亮,答对以后,裁判给加分后,看此时数码显示加分结果是否正确,如发现有问题,可重新修改原理图或硬件描述语言,完善设计。设计好后,如批量生产,可直接复制其他CPLD芯片,即写入代码即可。如果要对芯片进行其它设计,比如进行交通灯设计,要重新画原理图、或写硬件描述语言,重复以上工作过程,完成设计。这种修改设计相当于将房屋进行了重新装修,这种装修对CPLD来说可进行上万次。

家庭成员:经过几十年的发展,许多公司都开发出了CPLD可编程逻辑器件。比较典型的就是Altera、Lattice、Xilinx世界三大权威公司的产品,这里给出常用芯片: Altera EPM7128S (PLCC84)

Lattice LC4128V (TQFP100)

Xilinx XC95108 (PLCC84)

[编辑本段]FPGA与CPLD的辨别和分类

FPGA与CPLD的辨别和分类主要是根据其结构特点和工作原理。通常的分类 *** 是:

将以乘积项结构方式构成逻辑行为的器件称为CPLD,如Lattice的ispLSI系列、Xilinx的XC9500系列、Altera的MAX7000S系列和Lattice(原Vantis)的Mach系列等。

将以查表法结构方式构成逻辑行为的器件称为FPGA,如Xilinx的SPARTAN系列、Altera的FLEX10K或ACEX1K系列等。

===============

FPGA目录

FPGA工作原理

FPGA配置模式

FPGA主要生产厂商介绍

FPGA与CPLD的辨别和分类

FPGA的应用

FPGA是英文Field-Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

[编辑本段]FPGA工作原理

FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输出输入模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。FPGA的基本特点主要有:

1)采用FPGA设计ASIC电路,用户不需要投片生产,就能得到合用的芯片。

2)FPGA可做其它全定制或半定制ASIC电路的中试样片。

3)FPGA内部有丰富的触发器和I/O引脚。

4)FPGA是ASIC电路中设计周期最短、开发费用更低、风险最小的器件之一。

5) FPGA采用高速CHMOS工艺,功耗低,可以与CMOS、TTL电平兼容。

可以说,FPGA芯片是小批量系统提高系统集成度、可靠性的更佳选择之一。

FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此,工作时需要对片内的RAM进行编程。用户可以根据不同的配置模式,采用不同的编程方式。

加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FPGA进入工作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用。FPGA的编程无须专用的FPGA编程器,只须用通用的EPROM、PROM编程器即可。当需要修改FPGA功能时,只需换一片EPROM即可。这样,同一片FPGA,不同的编程数据,可以产生不同的电路功能。因此,FPGA的使用非常灵活。

[编辑本段]FPGA配置模式

FPGA有多种配置模式:并行主模式为一片FPGA加一片EPROM的方式;主从模式可以支持一片PROM编程多片FPGA;串行模式可以采用串行PROM编程FPGA;外设模式可以将FPGA作为微处理器的外设,由微处理器对其编程。

如何实现快速的时序收敛、降低功耗和成本、优化时钟管理并降低FPGA与PCB并行设计的复杂性等问题,一直是采用FPGA的系统设计工程师需要考虑的关键问题。如今,随着FPGA向更高密度、更大容量、更低功耗和集成更多IP的方向发展,系统设计工程师在从这些优异性能获益的同时,不得不面对由于FPGA前所未有的性能和能力水平而带来的新的设计挑战。

例如,领先FPGA厂商Xilinx最近推出的Virtex-5系列采用65nm工艺,可提供高达33万个逻辑单元、1,200个I/O和大量硬IP块。超大容量和密度使复杂的布线变得更加不可预测,由此带来更严重的时序收敛问题。此外,针对不同应用而集成的更多数量的逻辑功能、DSP、嵌入式处理和接口模块,也让时钟管理和电压分配问题变得更加困难。

幸运地是,FPGA厂商、EDA工具供应商正在通力合作解决65nm FPGA独特的设计挑战。不久以前,Synplicity与Xilinx宣布成立超大容量时序收敛联合工作小组,旨在更大程度帮助地系统设计工程师以更快、更高效的方式应用65nm FPGA器件。设计软件供应商Magma推出的综合工具Blast FPGA能帮助建立优化的布局,加快时序的收敛。

最近FPGA的配置方式已经多元化!

[编辑本段]FPGA主要生产厂商介绍

1、Altera

2、Xilinx

3、Actel

4、Lattice

其中Altera和Xilinx主要生产一般用途FPGA,其主要产品采用RAM工艺。Actel主要提供非易失性FPGA,产品主要基于反熔丝工艺和FLASH工艺。

FPGA设计的注意事项

不管你是一名逻辑设计师、硬件工程师或系统工程师,甚或拥有所有这些头衔,只要你在任何一种高速和多协议的复杂系统中使用了FPGA,你就很可能需要努力解决好器件配置、电源管理、IP集成、信号完整性和其他的一些关键设计问题。不过,你不必独自面对这些挑战,因为在当前业内领先的FPGA公司里工作的应用工程师每天都会面对这些问题,而且他们已经提出了一些将令你的设计工作变得更轻松的设计指导原则和解决方案。

I/O信号分配

可提供最多的多功能引脚、I/O标准、端接方案和差分对的FPGA在信号分配方面也具有最复杂的设计指导原则。尽管Altera的FPGA器件没有设计指导原则(因为它实现起来比较容易),但赛灵思的FPGA设计指导原则却很复杂。但不管是哪一种情况,在为I/O引脚分配信号时,都有一些需要牢记的共同步骤:

1 使用一个电子数据表列出所有计划的信号分配,以及它们的重要属性,例如I/O标准、电压、需要的端接 *** 和相关的时钟。

2 检查制造商的块/区域兼容性准则。

3 考虑使用第二个电子数据表制订FPGA的布局,以确定哪些管脚是通用的、哪些是专用的、哪些支持差分信号对和全局及局部时钟、哪些需要参考电压。

4 利用以上两个电子数据表的信息和区域兼容性准则,先分配受限制程度更大的信号到引脚上,最后分配受限制最小的。例如,你可能需要先分配串行总线和时钟信号,因为它们通常只分配到一些特定引脚。

5 按照受限制程度重新分配信号总线。在这个阶段,可能需要仔细权衡同时开关输出(SSO)和不兼容I/O标准等设计问题,尤其是当你具有很多个高速输出或使用了好几个不同的I/O标准时。如果你的设计需要局部/区域时钟,你将可能需要使用高速总线附近的管脚,更好提前记住这个要求,以免最后无法为其安排最合适的引脚。如果某个特定块所选择的I/O标准需要参考电压信号,记住先不要分配这些引脚。差分信号的分配始终要先于单端信号。如果某个FPGA提供了片内端接,那么它也可能适用于其他兼容性规则。

6 在合适的地方分配剩余的信号。

在这个阶段,考虑写一个只包含端口分配的HDL文件。然后通过使用供应商提供的工具或使用一个文本编辑器手动创建一个限制文件,为I/O标准和SSO等增加必要的支持信息。准备好这些基本文件后,你可以运行布局布线工具来确认是否忽视了一些准则或者做了一个错误的分配。

这将使你在设计的初始阶段就和布局工程师一起工作,共同规划PCB的走线、冗余规划、散热问题和信号完整性。FPGA工具可能可以在这些方面提供帮助,并协助你解决这些问题,因此你必须确保了解你的工具包的功能。

你咨询一位布局专家的时间越晚,你就越有可能需要去处理一些复杂的问题和设计反复,而这些可能可以通过一些前期分析加以避免。一旦你实现了满意的信号分配,你就要用限制文件锁定它们。

-------------------

基于CMOS的设计主要消耗三类切率:内部的(短路)、漏电的(静态的)以及开关的(电容)。当门电路瞬变时,VDD与地之间短路连接消耗内部功率。漏电功耗是CMOS工艺普遍存在的寄生效应引起的。而开关功耗则是自负载电容,放电造成的。开关功耗与短路功耗合在一起称为动态功耗。下面介绍降低静态功耗和动态功耗的设计技巧。

降低静态功耗

虽然静态电流与动态电流相比可以忽略不计,然而对电池供电的手持设备就显得十分重要,在设备通电而不工作时更是如此。静态电流的因素众多,包括处于没有完全关断或接通的状态下的I/O以及内部晶体管的工作电流、内部连线的电阻、输入与三态电驱动器上的拉或下拉电阻。在易失性技术中,保持编程信息也需一定的静态功率。抗熔断是一种非易失性技术,因此信息存储不消耗静态电流。

下面介绍几种降低静态功耗的设计 *** :

•驱动输入应有充分的电压电平,因而所有晶体管都是完全通导或关闭的。

•由于I/O线上的上拉或下拉电阻要消耗一定的电流,因此尽量避免使用这些电阻。

•少用驱动电阻或双极晶体管,这些器件需维持一个恒定电流,从而增加了静态电流。

•将时钟引脚按参数表推荐条件连接至低电平。悬空的时钟输入会大大增加静态电流。

•在将设计划分为多个器件时,减少器件间I/O的使用。

eX器件LP方式引脚的使用

Actel eX系列设计了特殊的低功率“休眠”模式。在该引脚驱动至高电平800ns后,器件进入极低功率待机模式,待机电流小于100μA。在低功率模式下,所有I/O(除时钟输入外)都处于三态,而内核全部断电。由于内核被断电,触发器中存储的信息会丢失,在进入工作模式(在引脚驱动至低平200ms后)时,用户需再次对器件初始化。同样,用户也应关闭所有通过CLKA、CLKB以及HCLK输入的时钟。然而这些时钟并不处于三态,时钟就可进入器件,从而增加功耗,因此在低功率模式下,时钟输入必须处于逻辑0或逻辑1。

有时用户很难阻止时钟进入器件。在此场合,用户可使用与CLKA或CLKA相邻的正常输入引脚并在设计中加进CLKINT。这样,时钟将通过靠近时钟引脚的正常输入进入器件,再通过CLKINT向器件提供时钟资源。

采用这种输入电路后,由于常规I/O是三态的,因此用户不必担心时钟进入器件。当然,增加一级门电路会产生06ns的较大时钟延时,幸好这在多数低功率设计中是可以接受的。注意应将与CLKINT缓冲器相关的CLKA或CLKB引脚接地。

此外还要注意,CLKINT只可用作连线时钟,HCLK并不具备将内部走线网连接到HCLK的能力,因而HCLK资源不能被常规输入驱动。换句话说,如果使用LP引脚就不能使用HCLK;使用HCLK时就应在外部截断时钟信号。

降低动态功耗

动态功耗是在时钟工作且输入正在开关时的功耗。对CMOS电路,动态功耗基本上确定了总功耗。动态功耗包括几个成分,主要是电容负载充电与放电(内部与I/O)以及短路电流。多数动态功率是内部或外部电容向器件充、放电消耗的。如果器件驱动多个I/O负载,大量的动态电流构成总功耗的主要部分。

对设计中给定的驱动器,动态功耗由下式计算

p=CL×V 2 DD×f

式中,CL是电容负载,VDD是电源电压,f则是开关频率。总功耗是每个驱动器功耗之总和。

由于VDD是固定的,降低内部功耗就要降低平均逻辑开关频率,减少每个时钟沿处的逻辑开关总数、减少连线 *** ,特别是高频信号连线 *** 中的电容值。对低功率设计,需要从系统至工艺的每个设计级别中采取相应预防措施,级别越高,效果越好。

[编辑本段]FPGA与CPLD的辨别和分类

FPGA与CPLD的辨别和分类主要是根据其结构特点和工作原理。通常的分类 *** 是:

将以乘积项结构方式构成逻辑行为的器件称为CPLD,如Lattice的ispLSI系列、Xilinx的XC9500系列、Altera的MAX7000S系列和Lattice(原Vantis)的Mach系列等。

将以查表法结构方式构成逻辑行为的器件称为FPGA,如Xilinx的SPARTAN系列、Altera的FLEX10K或ACEX1K系列等。

[编辑本段]FPGA的应用

FPGA的应用可分为三个层面:电路设计,产品设计,系统设计1.电路设计中FPGA的应用

连接逻辑,控制逻辑是FPGA早期发挥作用比较大的领域也是FPGA应用的基石.事实上在电路设计中应用FPGA的难度还是比较大的这要求开发者要具备相应的硬件知识(电路知识)和软件应用能力(开发工具)这方面的人才总是紧缺的,往往都从事新技术,新产品的开发成功的产品将变成市场主流基础产品 *** 品设计者应用在不远的将来,通用和专用IP的设计将成为一个热门行业!搞电路设计的前提是必须要具备一定的硬件知识.在这个层面,干重于学,当然,快速入门是很重要的,越好的位子越不等人电路开发是黄金饭碗.

2.产品设计

把相对成熟的技术应用到某些特定领域如通讯,视频,信息处理等等开发出满足行业需要并能被行业客户接受的产品这方面主要是FPGA技术和专业技术的结合问题,另外还有就是与专业客户的界面问题产品设计还包括专业工具类产品及民用产品,前者重点在性能,后者对价格敏感产品设计以实现产品功能为主要目的,FPGA技术是一个实现手段在这个领域,FPGA因为具备接口,控制,功能IP,内嵌CPU等特点有条件实现一个构造简单,固化程度高,功能全面的系统产品设计将是FPGA技术应用最广大的市场,具有极大的爆发性的需求空间产品设计对技术人员的要求比较高,路途也比较漫长不过现在整个行业正处在组建”首发团队”的状态,只要加入,前途光明产品设计是一种职业发展方向定位,不是简单的爱好就能做到的!产品设计领域会造就大量的企业和企业家,是一个近期的发展热点和机遇

3.系统级应用

系统级的应用是FPGA与传统的计算机技术结合,实现一种FPGA版的计算机系统如用Xilinx V-4, V-5系列的FPGA,实现内嵌POWER PC CPU, 然后再配合各种外围功能,实现一个基本环境,在这个平台上跑LINIX等系统这个系统也就支持各种标准外设和功能接口(如图象接口)了这对于快速构成FPGA大型系统来讲是很有帮助的。这种”山寨”味很浓的系统早期优势不一定很明显,类似ARM系统的境况但若能慢慢发挥出FPGA的优势,逐渐实现一些特色系统也是一种发展方向。若在系统级应用中,开发人员不具备系统的扩充开发能力,只是搞搞编程是没什么意义的,当然设备驱动程序的开发是另一种情况,搞系统级应用看似起点高,但不具备深层开发能力,很可能会变成爱好者,就如很多人会做网页但不能称做会编程类似以上是几点个人开发,希望能帮助想学FPGA但很茫然无措的人理一理思路。这是一个不错的行业,有很好的个人成功机会。但也肯定是一个竞争很激烈的行业,关键看的就是速度和深度当然还有市场适应能力。

FPGA作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

FPGA设计不是简单的芯片研究,主要是利用 FPGA 的模式进行其他行业产品的设计。 与 ASIC 不同,FPGA在通信行业的应用比较广泛。

通过对全球FPGA产品市场以及相关供应商的分析,结合当前我国的实际情况以及国内领先的FPGA产品可以发现相关技术在未来的发展方向,对我国科技水平的全面提高具有非常重要的推动作用。

扩展资料:

工作原理

FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输入输出模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。 

现场可编程门阵列(FPGA)是可编程器件,与传统逻辑电路和门阵列(如PAL,GAL及CPLD器件)相比,FPGA具有不同的结构。

FPGA利用小型查找表(16×1RAM)来实现组合逻辑,每个查找表连接到一个D触发器的输入端,触发器再来驱动其他逻辑电路或驱动I/O,由此构成了既可实现组合逻辑功能又可实现时序逻辑功能的基本逻辑单元模块,这些模块间利用金属连线互相连接或连接到I/O模块。

我看着好像意思是有一个同步的置位。

一般的reset信号都是异步的。很少用同步的复位。如果你确实是想要同步复位,那不用管这个warn。可能你的原本意思也是异步复位,但是你的代码中写错了。

一般的同步复位就是process的敏感变量中没有reset。

如何才能搭积木搭得高,需要详细说明!

不说复杂了,就说一点,重心越接近在一条竖着的直线上,堆的就越高

搭积木怎么才能搭得高

你好,

不说复杂了,就说一点:

重心越接近在一条竖着的直线上,堆的就越高

文综大体如何才能得高分,请详细说明。还有九十天高考,文综如何突破210

在3个月内提高210分很有可能 但在这三个月内要看你怎么学了 你的基础底子好的话 记住“勤奋(大量的做题)+正确的 *** (不要死记硬背)+自信(就为目标奋斗)=160分以上”没问题 我很负责告诉你信我话奋斗吧祝你成功

win10 edge里如何才能使用五笔输入法,需要详细说明

1 开启 CMD,输入 regedit 开启登录档编辑器;2 展开 HKEY_CURRENT_USER/Keyboard Layout/Substitutes,新建“字串值”,名称为 00000804,双击该字串,值设为 00000409;3 展开 HKEY_CURRENT_USER/Keyboard Layout/Preload,新建“字串值”,名称为 1,值为 00000804(如果“1”已存在则直接更新值,双击开启,再确定);4 重启。这样一来,开机就是简体中文-美式键盘,预设英文输入,你再安装其他的五笔,拼音之类就跟以前一样可以CART+SHIFT进行切换了!

如何转换MP4,我需要详细说明

你是要把其他格式转成MP4还是要把MP4转成其他格式啊

下载一个视讯转换软体 去你信的过而且经常下载软体的网站 搜寻"视讯转换器"就会出来很多个有转换功能的软体了 挑一个自己喜欢的下 然后在电脑上安装执行 把你要转换的档案汇入选择你要转换的格式就好了啊

如何引导孩子搭积木

(1) 先要给宝宝正确地示范:搭2-4块积木,让他模仿著搭。在搭的过程中,每加一块都夸奖他,用激励的语言让宝宝爱上搭积木。 

  (2) 先用大积木垫底,再依次用较小的积木或磁性积木以保证他容易成功。这样宝宝在成功中体验到了快乐,良好的情绪 促进他往更高的求知欲发展,满足他获得成功的需要。 

  (3) 如果宝宝不感兴趣,你可先搭2-3块积木,只让他搭最后一块,必要时和宝宝手把手地让他搭,搭好后,立刻表扬他,并可让他推倒作为鼓励。 

  (4) 也可以先手把手地教他,然后换成语言指导,最后提出任务:“搭高楼”。 

  (5) 学会搭3-4块积木后,要及时巩固成果,保持兴趣是很关键的,而良好的兴趣是可以正确培养的。一定要变换方式让宝宝愿意继续玩。

需要cpld和fpga的详细说明

CPLD

[编辑本段]简介

CPLD(Complex Programmable Logic Device)复杂可程式设计逻辑器件,是从PAL和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模积体电路范围。是一种使用者根据各自需要而自行构造逻辑功能的数字积体电路。其基本设计 *** 是借助整合开发软体平台,用原理图、硬体描述语言等 *** ,生成相应的目标档案,通过下载电缆(“在系统”程式设计)将程式码传送到目标晶片中,实现设计的数字系统。

CPLD主要是由可程式设计逻辑巨集单元(MC,Macro Cell)围绕中心的可程式设计互连矩阵单元组成。其中MC结构较复杂,并具有复杂的I/O单元互连结构,可由使用者根据需要生成特定的电路结构,完成一定的功能。由于CPLD内部采用固定长度的金属线进行各逻辑块的互连,所以设计的逻辑电路具有时间可预测性,避免了分段式互连结构时序不完全预测的缺点。

发展历史及应用领域:

20世纪70年代,最早的可程式设计逻辑器件--PLD诞生了。其输出结构是可程式设计的逻辑巨集单元,因为它的硬体结构设计可由软体完成(相当于房子盖好后人工设计区域性室内结构),因而它的设计比纯硬体的数位电路具有很强的灵活性,但其过于简单的结构也使它们只能实现规模较小的电路。为弥补PLD只能设计小规模电路这一缺陷,20世纪80年代中期,推出了复杂可程式设计逻辑器件--CPLD。目前应用已深入网路、仪器仪表、汽车电子、数控机床、航天测控装置等方面。

器件特点:

它具有程式设计灵活、整合度高、设计开发周期短、适用范围宽、开发工具先进、设计制造成本低、对设计者的硬体经验要求低、标准产品无需测试、保密性强、价格大众化等特点,可实现较大规模的电路设计,因此被广泛应用于产品的原型设计和产品生产(一般在10,000件以下)之中。几乎所有应用中小规模通用数字积体电路的场合均可应用CPLD器件。CPLD器件已成为电子产品不可缺少的组成部分,它的设计和应用成为电子工程师必备的一种技能。

如何使用:

CPLD是一种使用者根据各自需要而自行构造逻辑功能的数字积体电路。其基本设计 *** 是借助整合开发软体平台,用原理图、硬体描述语言等 *** ,生成相应的目标档案,通过下载电缆(“在系统”程式设计)将程式码传送到目标晶片中,实现设计的数字系统。

这里以抢答器为例讲一下它的设计(装修)过程,即晶片的设计流程。CPLD的工作大部分是在电脑上完成的。开启整合开发软体(Altera公司 Max+pluxII)→画原理图、写硬体描述语言(VHDL,Verilog)→编译→给出逻辑电路的输入激励讯号,进行模拟,检视逻辑输出结果是否正确→进行管脚输入、输出锁定(7128的64个输入、输出管脚可根据需要设定)→生成程式码→通过下载电缆将程式码传送并存储在CPLD晶片中。7128这块晶片各管脚已引出,将数码管、抢答开关、指示灯、蜂鸣器通过导线分别接到晶片板上,通电测试,当抢答开关按下,对应位的指示灯应当亮,答对以后,裁判给加分后,看此时数码显示加分结果是否正确,如发现有问题,可重新修改原理图或硬体描述语言,完善设计。设计好后,如批量生产,可直接复制其他CPLD晶片,即写入程式码即可。如果要对晶片进行其它设计,比如进行交通灯设计,要重新画原理图、或写硬体描述语言,重复以上工作过程,完成设计。这种修改设计相当于将房屋进行了重新装修,这种装修对CPLD来说可进行上万次。

家庭成员:经过几十年的发展,许多公司都开发出了CPLD可程式设计逻辑器件。比较典型的就是Altera、Lattice、Xilinx世界三大权威公司的产品,这里给出常用晶片: Altera EPM7128S (PLCC84)

Lattice LC4128V (TQFP100)

Xilinx XC95108 (PLCC84)

[编辑本段]FPGA与CPLD的辨别和分类

FPGA与CPLD的辨别和分类主要是根据其结构特点和工作原理。通常的分类 *** 是:

将以乘积项结构方式构成逻辑行为的器件称为CPLD,如Lattice的ispLSI系列、Xilinx的XC9500系列、Altera的MAX7000S系列和Lattice(原Vantis)的Mach系列等。

将以查表法结构方式构成逻辑行为的器件称为FPGA,如Xilinx的SPARTAN系列、Altera的FLEX10K或ACEX1K系列等。

===============

FPGA目录

FPGA工作原理

FPGA配置模式

FPGA主要生产厂商介绍

FPGA与CPLD的辨别和分类

FPGA的应用

FPGA是英文Field-Programmable Gate Array的缩写,即现场可程式设计门阵列,它是在PAL、GAL、CPLD等可程式设计器件的基础上进一步发展的产物。它是作为专用积体电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可程式设计器件闸电路数有限的缺点。

[编辑本段]FPGA工作原理

FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模组CLB(Configurable Logic Block)、输出输入模组IOB(Input Output Block)和内部连线(Interconnect)三个部分。FPGA的基本特点主要有:

1)采用FPGA设计ASIC电路,使用者不需要投片生产,就能得到合用的晶片。

2)FPGA可做其它全定制或半定制ASIC电路的中试样片。

3)FPGA内部有丰富的触发器和I/O引脚。

4)FPGA是ASIC电路中设计周期最短、开发费用更低、风险最小的器件之一。

5) FPGA采用高速CHMOS工艺,功耗低,可以与CMOS、TTL电平相容。

可以说,FPGA晶片是小批量系统提高系统整合度、可靠性的更佳选择之一。

FPGA是由存放在片内RAM中的程式来设定其工作状态的,因此,工作时需要对片内的RAM进行程式设计。使用者可以根据不同的配置模式,采用不同的程式设计方式。

加电时,FPGA晶片将EPROM中资料读入片内程式设计RAM中,配置完成后,FPGA进入工作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用。FPGA的程式设计无须专用的FPGA程式设计器,只须用通用的EPROM、PROM程式设计器即可。当需要修改FPGA功能时,只需换一片EPROM即可。这样,同一片FPGA,不同的程式设计资料,可以产生不同的电路功能。因此,FPGA的使用非常灵活。

[编辑本段]FPGA配置模式

FPGA有多种配置模式:并行主模式为一片FPGA加一片EPROM的方式;主从模式可以支援一片PROM程式设计多片FPGA;序列模式可以采用序列PROM程式设计FPGA;外设模式可以将FPGA作为微处理器的外设,由微处理器对其程式设计。

如何实现快速的时序收敛、降低功耗和成本、优化时钟管理并降低FPGA与PCB并行设计的复杂性等问题,一直是采用FPGA的系统设计工程师需要考虑的关键问题。如今,随着FPGA向更高密度、更大容量、更低功耗和整合更多IP的方向发展,系统设计工程师在从这些优异效能获益的同时,不得不面对由于FPGA前所未有的效能和能力水平而带来的新的设计挑战。

例如,领先FPGA厂商Xilinx最近推出的Virtex-5系列采用65nm工艺,可提供高达33万个逻辑单元、1,200个I/O和大量硬IP块。超大容量和密度使复杂的布线变得更加不可预测,由此带来更严重的时序收敛问题。此外,针对不同应用而整合的更多数量的逻辑功能、DSP、嵌入式处理和介面模组,也让时钟管理和电压分配问题变得更加困难。

幸运地是,FPGA厂商、EDA工具供应商正在通力合作解决65nm FPGA独特的设计挑战。不久以前,Synplicity与Xilinx宣布成立超大容量时序收敛联合工作小组,旨在更大程度帮助地系统设计工程师以更快、更高效的方式应用65nm FPGA器件。设计软体供应商Magma推出的综合工具Blast FPGA能帮助建立优化的布局,加快时序的收敛。

最近FPGA的配置方式已经多元化!

[编辑本段]FPGA主要生产厂商介绍

1、Altera

2、Xilinx

3、Actel

4、Lattice

其中Altera和Xilinx主要生产一般用途FPGA,其主要产品采用RAM工艺。Actel主要提供非易失性FPGA,产品主要基于反熔丝工艺和FLASH工艺。

FPGA设计的注意事项

不管你是一名逻辑设计师、硬体工程师或系统工程师,甚或拥有所有这些头衔,只要你在任何一种高速和多协议的复杂系统中使用了FPGA,你就很可能需要努力解决好器件配置、电源管理、IP整合、讯号完整性和其他的一些关键设计问题。不过,你不必独自面对这些挑战,因为在当前业内领先的FPGA公司里工作的应用工程师每天都会面对这些问题,而且他们已经提出了一些将令你的设计工作变得更轻松的设计指导原则和解决方案。

I/O讯号分配

可提供最多的多功能引脚、I/O标准、端接方案和差分对的FPGA在讯号分配方面也具有最复杂的设计指导原则。尽管Altera的FPGA器件没有设计指导原则(因为它实现起来比较容易),但赛灵思的FPGA设计指导原则却很复杂。但不管是哪一种情况,在为I/O引脚分配讯号时,都有一些需要牢记的共同步骤:

1 使用一个电子资料表列出所有计划的讯号分配,以及它们的重要属性,例如I/O标准、电压、需要的端接 *** 和相关的时钟。

2 检查制造商的块/区域相容性准则。

3 考虑使用第二个电子资料表制订FPGA的布局,以确定哪些管脚是通用的、哪些是专用的、哪些支援差分讯号对和全域性及区域性时钟、哪些需要参考电压。

4 利用以上两个电子资料表的资讯和区域相容性准则,先分配受限制程度更大的讯号到引脚上,最后分配受限制最小的。例如,你可能需要先分配序列汇流排和时钟讯号,因为它们通常只分配到一些特定引脚。

5 按照受限制程度重新分配讯号汇流排。在这个阶段,可能需要仔细权衡同时开关输出(SSO)和不相容I/O标准等设计问题,尤其是当你具有很多个高速输出或使用了好几个不同的I/O标准时。如果你的设计需要区域性/区域时钟,你将可能需要使用高速汇流排附近的管脚,更好提前记住这个要求,以免最后无法为其安排最合适的引脚。如果某个特定块所选择的I/O标准需要参考电压讯号,记住先不要分配这些引脚。差分讯号的分配始终要先于单端讯号。如果某个FPGA提供了片内端接,那么它也可能适用于其他相容性规则。

6 在合适的地方分配剩余的讯号。

在这个阶段,考虑写一个只包含埠分配的HDL档案。然后通过使用供应商提供的工具或使用一个文字编辑器手动建立一个限制档案,为I/O标准和SSO等增加必要的支援资讯。准备好这些基本档案后,你可以执行布局布线工具来确认是否忽视了一些准则或者做了一个错误的分配。

这将使你在设计的初始阶段就和布局工程师一起工作,共同规划PCB的走线、冗余规划、散热问题和讯号完整性。FPGA工具可能可以在这些方面提供帮助,并协助你解决这些问题,因此你必须确保了解你的工具包的功能。

你咨询一位布局专家的时间越晚,你就越有可能需要去处理一些复杂的问题和设计反复,而这些可能可以通过一些前期分析加以避免。一旦你实现了满意的讯号分配,你就要用限制档案锁定它们。

-------------------

基于CMOS的设计主要消耗三类切率:内部的(短路)、漏电的(静态的)以及开关的(电容)。当闸电路瞬变时,VDD与地之间短路连线消耗内部功率。漏电功耗是CMOS工艺普遍存在的寄生效应引起的。而开关功耗则是自负载电容,放电造成的。开关功耗与短路功耗合在一起称为动态功耗。下面介绍降低静态功耗和动态功耗的设计技巧。

降低静态功耗

虽然静态电流与动态电流相比可以忽略不计,然而对电池供电的手持装置就显得十分重要,在装置通电而不工作时更是如此。静态电流的因素众多,包括处于没有完全关断或接通的状态下的I/O以及内部电晶体的工作电流、内部连线的电阻、输入与三态电驱动器上的拉或下拉电阻。在易失性技术中,保持程式设计资讯也需一定的静态功率。抗熔断是一种非易失性技术,因此资讯储存不消耗静态电流。

下面介绍几种降低静态功耗的设计 *** :

•驱动输入应有充分的电压电平,因而所有电晶体都是完全通导或关闭的。

•由于I/O线上的上拉或下拉电阻要消耗一定的电流,因此尽量避免使用这些电阻。

•少用驱动电阻或双极电晶体,这些器件需维持一个恒定电流,从而增加了静态电流。

•将时钟引脚按引数表推荐条件连线至低电平。悬空的时钟输入会大大增加静态电流。

•在将设计划分为多个器件时,减少器件间I/O的使用。

eX器件LP方式引脚的使用

Actel eX系列设计了特殊的低功率“休眠”模式。在该引脚驱动至高电平800ns后,器件进入极低功率待机模式,待机电流小于100μA。在低功率模式下,所有I/O(除时钟输入外)都处于三态,而核心全部断电。由于核心被断电,触发器中储存的资讯会丢失,在进入工作模式(在引脚驱动至低平200ms后)时,使用者需再次对器件初始化。同样,使用者也应关闭所有通过CLKA、CLKB以及HCLK输入的时钟。然而这些时钟并不处于三态,时钟就可进入器件,从而增加功耗,因此在低功率模式下,时钟输入必须处于逻辑0或逻辑1。

有时使用者很难阻止时钟进入器件。在此场合,使用者可使用与CLKA或CLKA相邻的正常输入引脚并在设计中加进CLKINT。这样,时钟将通过靠近时钟引脚的正常输入进入器件,再通过CLKINT向器件提供时钟资源。

采用这种输入电路后,由于常规I/O是三态的,因此使用者不必担心时钟进入器件。当然,增加一级闸电路会产生06ns的较大时钟延时,幸好这在多数低功率设计中是可以接受的。注意应将与CLKINT缓冲器相关的CLKA或CLKB引脚接地。

此外还要注意,CLKINT只可用作连线时钟,HCLK并不具备将内部走线网连线到HCLK的能力,因而HCLK资源不能被常规输入驱动。换句话说,如果使用LP引脚就不能使用HCLK;使用HCLK时就应在外部截断时钟讯号。

降低动态功耗

动态功耗是在时钟工作且输入正在开关时的功耗。对CMOS电路,动态功耗基本上确定了总功耗。动态功耗包括几个成分,主要是电容负载充电与放电(内部与I/O)以及短路电流。多数动态功率是内部或外部电容向器件充、放电消耗的。如果器件驱动多个I/O负载,大量的动态电流构成总功耗的主要部分。

对设计中给定的驱动器,动态功耗由下式计算

p=CL×V 2 DD×f

式中,CL是电容负载,VDD是电源电压,f则是开关频率。总功耗是每个驱动器功耗之总和。

由于VDD是固定的,降低内部功耗就要降低平均逻辑开关频率,减少每个时钟沿处的逻辑开关总数、减少连线网路,特别是高频讯号连线网路中的电容值。对低功率设计,需要从系统至工艺的每个设计级别中采取相应预防措施,级别越高,效果越好。

[编辑本段]FPGA与CPLD的辨别和分类

FPGA与CPLD的辨别和分类主要是根据其结构特点和工作原理。通常的分类 *** 是:

将以乘积项结构方式构成逻辑行为的器件称为CPLD,如Lattice的ispLSI系列、Xilinx的XC9500系列、Altera的MAX7000S系列和Lattice(原Vantis)的Mach系列等。

将以查表法结构方式构成逻辑行为的器件称为FPGA,如Xilinx的SPARTAN系列、Altera的FLEX10K或ACEX1K系列等。

[编辑本段]FPGA的应用

FPGA的应用可分为三个层面:电路设计,产品设计,系统设计1.电路设计中FPGA的应用

连线逻辑,控制逻辑是FPGA早期发挥作用比较大的领域也是FPGA应用的基石.事实上在电路设计中应用FPGA的难度还是比较大的这要求开发者要具备相应的硬体知识(电路知识)和软体应用能力(开发工具)这方面的人才总是紧缺的,往往都从事新技术,新产品的开发成功的产品将变成市场主流基础产品 品设计者应用在不远的将来,通用和专用IP的设计将成为一个热门行业!搞电路设计的前提是必须要具备一定的硬体知识.在这个层面,干重于学,当然,快速入门是很重要的,越好的位子越不等人电路开发是黄金饭碗.

2.产品设计

把相对成熟的技术应用到某些特定领域如通讯,视讯,资讯处理等等开发出满足行业需要并能被行业客户接受的产品这方面主要是FPGA技术和专业技术的结合问题,另外还有就是与专业客户的介面问题产品设计还包括专业工具类产品及民用产品,前者重点在效能,后者对价格敏感产品设计以实现产品功能为主要目的,FPGA技术是一个实现手段在这个领域,FPGA因为具备介面,控制,功能IP,内嵌CPU等特点有条件实现一个构造简单,固化程度高,功能全面的系统产品设计将是FPGA技术应用最广大的市场,具有极大的爆发性的需求空间产品设计对技术人员的要求比较高,路途也比较漫长不过现在整个行业正处在组建”首发团队”的状态,只要加入,前途光明产品设计是一种职业发展方向定位,不是简单的爱好就能做到的!产品设计领域会造就大量的企业和企业家,是一个近期的发展热点和机遇

3.系统级应用

系统级的应用是FPGA与传统的计算机技术结合,实现一种FPGA版的计算机系统如用Xilinx V-4, V-5系列的FPGA,实现内嵌POWER PC CPU, 然后再配合各种外围功能,实现一个基本环境,在这个平台上跑LINIX等系统这个系统也就支援各种标准外设和功能介面(如图象介面)了这对于快速构成FPGA大型系统来讲是很有帮助的。这种”山寨”味很浓的系统早期优势不一定很明显,类似ARM系统的境况但若能慢慢发挥出FPGA的优势,逐渐实现一些特色系统也是一种发展方向。若在系统级应用中,开发人员不具备系统的扩充开发能力,只是搞搞程式设计是没什么意义的,当然装置驱动程式的开发是另一种情况,搞系统级应用看似起点高,但不具备深层开发能力,很可能会变成爱好者,就如很多人会做网页但不能称做会程式设计类似以上是几点个人开发,希望能帮助想学FPGA但很茫然无措的人理一理思路。这是一个不错的行业,有很好的个人成功机会。但也肯定是一个竞争很激烈的行业,关键看的就是速度和深度当然还有市场适应能力。

在win xp 搭建php+oracle 请详细说明

PHP执行在 windows下可参考:

:tech163/06/0206/11/299AMBLT0009159K

oracle去下载个windows版的自行安装。。

器官如何捐献,要详细说明

年满十八岁且具有完全民事行为能力的自然人可以捐献活体器官,捐献前应当有同意捐献的书面证明。捐献人捐献活体器官,应当不危害其生命安全。自然人愿意死亡后捐献器官的,应当有同意捐献的书面证明,或者有同意捐献的口头意思表示,并有其配偶(没有配偶的有其父母和成年子女)以及两名医师的书面证明。需要接受器官移植的个人,应当向省红十字会或者通过医疗机构向省红十字会申请。

捐献遗体器官是在自愿、无偿的原则下进行的。可以先到各登记接受站登记,然后到公证处进行公证。

遗体器官捐献,是指自然人生前自愿表示在死亡后,由其执行人将遗体的全部或者部分器官捐献给医学科学事业的行为,以及生前未表示是否捐献意愿的自然人死亡后,由其直系亲属将遗体的全部或部分捐献给医学科学事业的行为。

志愿无偿捐献遗体器官者需填写申请,后到附近公证处办理公证。同时,登记接受站要向正式登记者颁发由省红十字会统一印制的“志愿捐献遗体纪念证”。

生前未办理志愿捐献遗体申请登记手续的,但本人临终前或死后其直系亲属要求志愿捐献遗体,要取得死者工作单位或公证处证明后,才能到登记接受站办理接受捐献遗体的手续。

志愿捐献者可以变更或撤销登记。但要先办理变更或撤销登记申请公证。

据了解,国家规定的甲、乙类传染病人的遗体不列入志愿捐献遗体范畴。

如何用 dos ping ip 要详细说明

验证与远端计算机的连线。该命令只有在安装了 TCP/IP 协议后才可以使用。

ping [-t] [-a] [-n count] [-l length] [-f] [-i ttl] [-v tos] [-r count] [-s count] [[-j puter-list] | [-k puter-list]] [-w timeout] destination-list

引数

-t

Ping 指定的计算机直到中断。

-a

将地址解析为计算机名。

-n count

传送 count 指定的 ECHO 资料包数。预设值为 4。

-l length

传送包含由 length 指定的资料量的 ECHO 资料包。预设为 32 位元组;更大值是 65,527。

-f

在资料包中传送“不要分段”标志。资料包就不会被路由上的闸道器分段。

-i ttl

将“生存时间”栏位设定为 ttl 指定的值。

-v tos

将“服务型别”栏位设定为 tos 指定的值。

-r count

在“记录路由”栏位中记录传出和返回资料包的路由。count 可以指定最少 1 台,最多 9 台计算机。

-s count

指定 count 指定的跃点数的时间戳。

-j puter-list

利用 puter-list 指定的计算机列表路由资料包。连续计算机可以被中间闸道器分隔(路由稀疏源)IP 允许的更大数量为 9。

-k puter-list

利用 puter-list 指定的计算机列表路由资料包。连续计算机不能被中间闸道器分隔(路由严格源)IP 允许的更大数量为 9。

-w timeout

指定超时间隔,单位为毫秒。

destination-list

指定要 ping 的远端计算机